
Smart contract security
audit report



Audit Number: 202110091630

Report Inquiry Name: JGN DeFi

Smart Contract Name:

JGNBNBRewards

Smart Contract Address:

0x3311354798880ef029405c52bb275d10a69a9cde

Smart Contract Address Link:

https://bscscan.com/address/0x3311354798880ef029405c52bb275d10a69a9cde#code

Start Date: 2021.10.09

Completion Date: 2021.10.09

Overall Result: Pass

Audit Team: Beosin Technology Co. Ltd.

Audit Categories and Results:

No. Categories Subitems Results

1 Coding Conventions

Compiler Version Security Pass

Deprecated Items Pass

Redundant Code Pass

SafeMath Features Pass

require/assert Usage Pass

Gas Consumption Pass

Visibility Specifiers Pass

Fallback Usage Pass

2 General Vulnerability

Integer Overflow/Underflow Pass

Reentrancy Pass
Pseudo-random Number Generator
(PRNG) Pass

Transaction-Ordering Dependence Pass

DoS (Denial of Service) Pass

Access Control of Owner Pass



Low-level Function (call/delegatecall)
Security Pass

Returned Value Security Pass

tx.origin Usage Pass

Replay Attack Pass

Overriding Variables Pass

3 Business Security
Business Logics Pass

Business Implementations Pass

Disclaimer: This report is made in response to the project code. No description, expression or
wording in this report shall be construed as an endorsement, affirmation or confirmation of the
project.This audit is only applied to the type of auditing specified in this report and the scope of
given in the results table. Other unknown security vulnerabilities are beyond auditing responsibility.
Beosin Technology only issues this report based on the attacks or vulnerabilities that already existed
or occurred before the issuance of this report. For the emergence of new attacks or vulnerabilities
that exist or occur in the future, Beosin Technology lacks the capability to judge its possible impact
on the security status of smart contracts, thus taking no responsibility for them. The security audit
analysis and other contents of this report are based solely on the documents and materials that the
contract provider has provided to Beosin Technology before the issuance of this report, and the
contract provider warrants that there are no missing, tampered, deleted; if the documents and
materials provided by the contract provider are missing, tampered, deleted, concealed or reflected in
a situation that is inconsistent with the actual situation, or if the documents and materials provided
are changed after the issuance of this report, Beosin Technology assumes no responsibility for the
resulting loss or adverse effects. The audit report issued by Beosin Technology is based on the
documents and materials provided by the contract provider, and relies on the technology currently
possessed by Beosin. Due to the technical limitations of any organization, this report conducted by
Beosin still has the possibility that the entire risk cannot be completely detected. Beosin disclaims
any liability for the resulting losses.

The final interpretation of this statement belongs to Beosin.

Audit Results Explained:
Beosin Technology has used several methods including Formal Verification, Static Analysis, Typical Case

Testing and Manual Review to audit three major aspects of smart contract JGNBNBRewards, including

Coding Standards, Security, and Business Logic. The JGNBNBRewards contract passed all audit items.

The overall result is Pass. The smart contract is able to function properly.

1. Coding Conventions

Check the code style that does not conform to Solidity code style.

1.1 Compiler Version Security



 Description: Check whether the code implementation of current contract contains the exposed

solidity compiler bug.

 Result: Pass

1.2 Deprecated Items

 Description: Check whether the current contract has the deprecated items.

 Result: Pass

1.3 Redundant Code

 Description: Check whether the contract code has redundant codes.

 Result: Pass

1.4 SafeMath Features

 Description: Check whether the SafeMath has been used. Or prevents the integer overflow/underflow

in mathematical operation.

 Result: Pass

1.5 require/assert Usage

 Description: Check the use reasonability of 'require' and 'assert' in the contract.

 Result: Pass

1.6 Gas Consumption

 Description: Check whether the gas consumption exceeds the block gas limitation.

 Result: Pass

1.7 Visibility Specifiers

 Description: Check whether the visibility conforms to design requirement.

 Result: Pass

1.8 Fallback Usage

 Description: Check whether the Fallback function has been used correctly in the current contract.

 Result: Pass

2. General Vulnerability

Check whether the general vulnerabilities exist in the contract.

2.1 Integer Overflow/Underflow

 Description: Check whether there is an integer overflow/underflow in the contract and the calculation

result is abnormal.

 Result: Pass

2.2 Reentrancy

 Description: An issue when code can call back into your contract and change state, such as

withdrawing BNB.



 Result: Pass

2.3 Pseudo-random Number Generator (PRNG)

 Description: Whether the results of random numbers can be predicted.

 Result: Pass

2.4 Transaction-Ordering Dependence

 Description: Whether the final state of the contract depends on the order of the transactions.

 Result: Pass

2.5 DoS (Denial of Service)

 Description: Whether exist DoS attack in the contract which is vulnerable because of unexpected

reason.

 Result: Pass

2.6 Access Control of Owner

 Description: Whether the owner has excessive permissions, such as malicious issue, modifying the

balance of others.

 Result: Pass

2.7 Low-level Function (call/delegatecall) Security

 Description: Check whether the usage of low-level functions like call/delegatecall have

vulnerabilities.

 Result: Pass

2.8 Returned Value Security

 Description: Check whether the function checks the return value and responds to it accordingly.

 Result: Pass

2.9 tx.origin Usage

 Description: Check the use secure risk of 'tx.origin' in the contract.

 Result: Pass

2.10 Replay Attack

 Description: Check whether the implement possibility of Replay Attack exists in the contract.

 Result: Pass

2.11 Overriding Variables

 Description: Check whether the variables have been overridden and lead to wrong code execution.

 Result: Pass



3. Business Security

3.1 Stake Initialization

 Description: The "stake-reward" mode of the contract needs to initialize the relevant parameters

(rewardRate, lastUpdateTime, periodFinish), call the notifyRewardAmount function by the specified

reward distribution manager address rewardDistribution, and enter the initial reward used to calculate

the rewardRate, initialize the stake and reward related parameters. This function can be called by the

specified address rewardDistribution at any time to control the reward rate and the key time judgment

condition, even if the rewardRate is updated when the checkhalve modifier executes the logic, it can still

be modified by entering the specified value reward in this function. If the value is too small, the user's

reward will not match expectations.

Figure 1 source code of notifyRewardAmount

 Related functions: notifyRewardAmount, rewardPerToken, lastTimeRewardApplicable

 Result: Pass

3.2 Stake LP tokens

 Description: The contract implements the stake function to stake the LP tokens. The user need to

approve the contract address in advance. By calling the transferFrom function in the LP contract, the

contract address transfers the specified amount of LP tokens to the contract address on behalf of the user;

This function restricts the user to call only after the "stake-reward" mode is turned on (the specified time

is reached); each time this function is called to stake tokens, the reward related data is updated through

the modifier updateReward.(It should be noted here that the rewardRate will be reduced by half in the

second cycle, and there will be no rewards in the future)



Figure 2 source code of stake function(1/2)

Figure 3 source code of stake function(2/2)

Figure 4 source code of modifier checkhalve

 Related functions: stake, rewardPerToken, lastTimeRewardApplicable, earned, balanceOf

 Result: Pass

3.3 Withdraw LP tokens

 Description: The contract implements the withdraw function to withdraw the LP tokens. By calling

the transfer function in the token contract, the contract address transfers the specified amount of LP

tokens to the user; This function restricts the user to call only after the "stake-reward" mode is turned on

(the specified time is reached); each time this function is called to stake tokens, the reward related data is

updated through the modifier updateReward. (It should be noted here that the rewardRate will be

reduced by half in the second cycle, and there will be no rewards in the future)



Figure 5 source code of withdraw function(1/2)

Figure 6 source code of withdraw function(2/2)

 Related functions: withdraw, rewardPerToken, lastTimeRewardApplicable, earned, balanceOf

 Result: Pass

3.4 Withdraw rewards (JGN)

 Description: The contract implements the getReward function to withdraw the rewards (JGN). By

calling the transfer function in the JGN contract, the contract address transfers the specified amount (all

rewards of caller) of JGN to the user; This function restricts the user to call only after the "stake-reward"

mode is turned on (the specified time is reached); each time this function is called to stake tokens, the

reward related data is updated through the modifier updateReward. (It should be noted here that the

rewardRate will be reduced by half in the second cycle, and there will be no rewards in the future)

Figure 7 source code of getReward function

 Related functions: getReward, rewardPerToken, lastTimeRewardApplicable, earned, balanceOf

 Result: Pass

3.5 Exit the stake participation

 Description: The contract implements the exit function to close the participation of "stake-reward"

mode. Call the withdraw function to withdraw all stake JGN, call the getReward function to receive all



rewards. The user address cannot get new rewards because the balance of LP tokens already staked is

empty.

Figure 8 source code of exit function

 Related functions: exit, withdraw, getReward, rewardPerToken, lastTimeRewardApplicable, earned,
balanceOf

 Result: Pass

3.6 Reward related data query function

 Description: Contract users can query the earliest timestamp between the current timestamp and the

periodFinish by calling the lastTimeRewardApplicable function; calling the rewardPerToken function

can query the gettable rewards for each stake LP; calling the earned function can query the total

claimable stake rewards of the specified address.

 Related functions: lastTimeRewardApplicable, rewardPerToken, earned

 Result: Pass

4. Conclusion

Beosin(ChengduLianAn) conducted a detailed audit on the design and code implementation of the smart

contract JGNBNBRewards contract passed all audit items, The overall audit result is Pass.



Official Website

https://lianantech.com

E-mail

vaas@lianantech.com

Twitter

https://twitter.com/Beosin_com

http://lianantech.com

